I checked the calibration of my AWS ACPro-200 balance by weighing repetitively a $100-\mathrm{g}$ standard. The spread of values returned was $\sim 40 \mathrm{mg}$, astonishingly good for such an inexpensive instrument (currently, $\$ 18$ on Amazon). Because 100 g was several-fold my planned measurement, I also weighed 3 newish nickels and the value returned was 15.01 g , my expectation (currently, newly minted nickels weigh 5.000 g each, making them a substitute mass standard in the absence of a real one). Satisfied with the balance, I made a solution, nominally 15 g sucrose qs $100 \mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ in a volumetric flask and corrected for expected approximate solution density $\left(1.06 \mathrm{~g} \mathrm{ml}^{-1}\right)$. These procedures resulted in sucrose concentration expressed as g (solute) g^{-1} (solution), i.e., the definition of brix. Then, I measured the brix with my usual refractometer $0-32 \%$, ATC, graduations at 0.2%, and I extrapolated between graduations. Closure was within $\sim 5 \%$ (as good as the sum of errors would indicate). I concluded that my refractometer was reliable for measuring brix in sugar-cane juice. (Methodological improvements would be unproductive given the instrumentation and the purposes to which the validation would be put.)

